WQS Revision: Chloride, Sulfate & TDS

01/23/2009 Connie Dou, Iowa DNR

Presentation Outline

- Chloride criteria
 - Why, when and how
- Sulfate Criteria
 - Why, when and how
- Replacing TDS with specific ion criteria
- Benefit of the proposed criteria
 - Water quality protection
 - Implementation and compliance

Acronyms and Basics

- LC50 = Concentration lethal to 50% of tested species in less than 48 or 96- hour acute testing
- Acute criterion = Short term effect
- Chronic criterion = Long term effect
- ACR = Acute-to-Chronic ratio
 - = Acute LC50/Chronic endpoint (NOEC)
 - ACR for rainbow trout is 7.308
 - ACR for daphnia is 3.187

Why: EPA 1988 Chloride Criteria

- Acute value = 860 mg/l
- Chronic value = 230 mg/l
- Derived from 12 genus species toxicity data
- Most sensitive:
 - Cladoceran: Daphnia pulex

When: IDNR Chloride Criteria Development in 2007

- Literature search
- Working with EPA Lab in Duluth
- TAC meeting in Nov. 2007
- More toxicity testing needed
 - Replicate of fingernail clam data
 - Effect of water chemistry, hardness & sulfate

New Toxicity Testing for Chloride

- Purpose of More Toxicity Testing
 - Determine chloride acute toxicity to four species:
 - Water flea (*C. dubia*)
 - ■Fingernail clam (*Sphaerium simile*)
 - Planorbid snail (*Gyraulus parvus*)
 - Tubificid worm (*Tubifex tubifex*)
 - Effect of hardness and sulfate on chloride toxicity
 - ■C. dubia
 - EPA contracted GLEC and INHS Labs

Chloride LC50 vs. Hardness C. dubia

Chloride LC50 vs. Sulfate C. dubia

HOW: Acute Criterion

- Using 1985 EPA Guidance
- A total of 23 species (an increase from 12 species in 1988 criteria)
- Acute Criteria Equation
 - A function of:
 - Hardness (significant impact)
 - ■Sulfate (lesser degree)
- 254.3(hardness)^{0.205797}*(sulfate)^{-0.07452}

HOW: Chronic Criterion

- Predict chronic values from acute LC50s
 - Chronic endpoint = LC50/ACR
- For vertebrates, use ACR of rainbow trout (7.308)
- For invertebrates, use ACR of daphnia (3.187)
- The same method for developing acute criterion
- Chronic Criteria Equation
 - A function of:
 - Hardness (significant impact)
 - Sulfate (lesser degree)
- $\overline{\hspace{1cm}}$ 161.5(hardness)^{0.205797}*(sulfate)^{-0.07452}

Chloride Criteria Recalculation Results

Proposed Chloride	Number of Species
Criteria	(N=23)
Acute	254.3(hardness) ^{0.205797} *(sulfate) ^{-0.07452}
Criterion	
Chronic	161.5(hardness) ^{0.205797} *(sulfate) ^{-0.07452}
Criterion	

Example Chloride Criterion Values

Hardness = 200 mg/l Sulfate = 63 mg/l

Hardness = 200 mg/l Sulfate = 63 mg/l

353 mg/l

Statewide Default Water Chemistry

- Statewide ambient monitoring data from 2000-2007
- 10th percentile HARDNESS value = 200 mg/l
- The corresponding SULFATE is selected by regression analysis of sulfate vs. hardness
- Statewide default water chemistry:
 - Hardness = 200 mg/l as CaCO3
 - Sulfate = 63 mg/l

Correlation between Sulfate and Hardness

Chloride Criteria Based on Default Water Chemistry

Proposed Chloride	Criteria at
Criteria	Hardness = 200 mg/l and
	Sulfate = 63 mg/l
Acute	556
Criterion	
Chronic	353
Criterion	

Implementation of Chloride Criteria

Proposed Chloride Criteria	Location for Compliance
Acute	Beyond the Zone of Initial Dilution
Criterion	2.5% 1Q10 flow
Chronic	Beyond the Mixing Zone
Criterion	25% 7Q10 flow

Illustration of Chloride Criteria Implementation

Benefits of Chloride Criteria

- Based on defensible scientific toxicity data
- Easy to implement
- Incorporation of site-specific water chemistry in Iowa
- More appropriately protect Iowa's water quality

Sulfate Criteria

Sulfate Criteria Development

- NO national criteria
- Illinois worked with the USEPA Duluth Toxicity laboratory to search available toxicity test data on sulfate.
 - Data for over 30 kinds of organisms from about 30 papers/sources were found.
- Dr. David Soucek of the Illinois Natural History Survey was contracted to conduct additional toxicity testing
 - fill the toxicity data gap
 - Water flea, amphipod, Fingernail clam, Fatmucket
- Determine the effect of hardness and chloride on sulfate toxicity

Sulfate Criteria Applicable to Iowa

- The similarities of the landscape between the two States
- The similarities of water quality and resident species
- High level of scientific work

Sulfate Criteria

Table 2. Proposed Sulfate Criteria for Iowa Waters – Aquatic Life Criteria

Chloride	$Cl^{-} < 5 \text{ mg/L}$	$5 < = C1^{-} < =25$	$25 < C1^{-} < =500$
Hardness			
mg/L as CaCO ₃			
H < 100 mg/L	500	500	500
100<=H<= 500	500	[-57.478 + 5.79]	[1276.7 + 5.508]
		(hardness) + 54.163	(hardness) - 1.457
		(chloride)] * 0.65	(chloride)] * 0.65
H > 500	500	2,000	2,000

In addition, a sulfate criterion of 2,000 mg/l for other uses such as livestock watering

Example Sulfate Criterion Values

Hardness = 200 mg/l Chloride = 34 mg/l

1,514 mg/l

Sulfate Criteria Based on Default Water Chemistry

Proposed Chloride	Criteria at	
Criteria	Hardness = 200 mg/l and	
	Chloride = 34 mg/l	
Acute		
Criterion	1,514 mg/l	
Chronic		
Criterion		

Implementation of Sulfate Criteria

Proposed Chloride Criteria	Location for Compliance
Aquatic Life Criteria	Beyond the Zone of Initial Dilution 2.5% 1Q10 flow
Livestock Watering	Beyond the Mixing Zone 25% 7Q10 flow

Benefits of Sulfate Criteria

- Numerical criteria for aquatic life
- Based on defensible scientific toxicity data
- Easy to implement
- Incorporation of site-specific water chemistry in Iowa
- More appropriately protect Iowa's water quality

Revision of the Interim TDS Approach

What is TDS

- Total Dissolved Solids is a measure of all constituents dissolved in water
 - Inorganic anions include
 - carbonates, chlorides, sulfates and nitrates.
 - Inorganic cations include
 - sodium, potassium, calcium and magnesium.

Current Interim TDS Approach

- Adopted in 2004 as an interim approach
- If in-stream TDS > 1,000 mg/l, effluent toxicity testing
 - Both acute and chronic (for designated waterbodies)
 - Toxicity testing on fathead minnow and ceriodaphnia
- If in-stream Chloride > EPA 1988 criteria, effluent toxicity testing
 - Acute testing: chloride > 860 mg/l
 - Chronic testing: chloride > 230 mg/l
 - Toxicity testing on fathead minnow and ceriodaphnia

TDS Interim Strategy

- Depending on the discharge situation, effluent toxicity due solely to TDS may be less of a regulatory problem due to rapid dilution below toxic levels and the absence of human health or biomagnification concerns.
- The toxicity related to the ions in TDS is due to the specific combination and concentration of ions and is not predictable from TDS concentrations.

TDS Interim Strategy

- Integrative parameters such as conductivity, TDS, or salinity are not robust predictors of toxicity for a range of water qualities.
- Research recommends that different limits for individual ions, rather than TDS, be used for salmonid species.

Advantages of Ion Specific Criteria

- Developed based scientific toxicity data
- Easy to implement than narrative criteria
- Easy to check compliance
- Prevent over-protective or under-protective
- Pollutant specific criteria instead of integral parameters such as TDS, salinity etc.
- Incorporate site-specific conditions
- Resources will focus on source reduction

Timelines

- January 2009: Initiate Stakeholder Process
- February 2009: Consultation Package to EPA
- March 2009: Response from EPA
- April 2009: Info item to EPC
- May 2009: NOIA to EPC
- Updates will be posted on our web page, http://www.iowadnr.gov/water/standards/index.html